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ABSTRACT

The growing importance of computational science and informatics has given rise to
complex systems which are often modeled using hypergraphs; these are generaliza-
tions of graphs which are used in modeling phenomena in cyberspace, relations in
information systems, social networks, etc. In this research, we explore several classes
and families of hypergraphs. Two classes are considered, namely, linear and nonlin-
ear. The former is well-studied and yet the later is barely known. We explore and
classify various families of each class through the notions of linearity, uniformity, be-
ing balanced and semi-balanced along with their cyclic natures. After defining and
proving some necessary conditions on the existence of some of these hypergraphs, we
introduce several activities and applied problems along with their solutions to engage
early college students on hypergraphs.

i



DEDICATION

This thesis is dedicated to my parents Melinda and Nicholas Vacca. My parents have
always inspired me to do my best in anything that I take on and to never give up.
They have always supported my decisions when it came to my education and what
path I wanted to follow in life. I would also like to dedicate this thesis to my close
friends. We have always encouraged each other to further our education and strive
for the best. Without my parents and friends, I would not be where I am today. With
that said, I am forever grateful to them.

ii



ACKNOWLEDGEMENT

I would like to start by acknowledging the first teacher that encouraged me to become
a mathematics teacher, Mr. Kevin Argo. I had the honor of being in one of Mr.
Argo’s mathematics classes at College of the Albemarle and learned what it meant
to be a great teacher. It was then I decided that when I transferred to Elizabeth
City State University that I would major in mathematics and go back to teach at
the community college level. I would also like to acknowledge Elizabeth City State
University as a whole. Anytime I needed assistance with my loans or had questions,
the staff was some of the nicest people I have ever spoken with. It has also been a
blessing to have such a great institution so close to home and be able to earn not only
my bachelor’s degree from here, but now my master’s degree. In addition, I would like
to acknowledge the mathematics department for providing us with the best professors
we could ever ask for. I had the honor of working with Dr. Julian Allagan on my
thesis. His knowledge on the topic helped me in many ways on this thesis and I
have learned so much from him. Dr. Allagan has also been a great professor in the
undergraduate and graduate courses I have taken with him. I would like to thank Dr.
Kenneth L. Jones for being an incredible professor and learning to see the brilliance
in his "beautiful mathematics". In the very first course I took with Dr. Jones, he was
already encouraging us to further our education in their graduate program. I would
like to thank Dr. Dipendra Sengupta, as I took the majority of my courses under
him, I have truly learned so much. Dr. Sengupta has always pushed me to do better
and it has shown over the years. Lastly, I would like to thank Dr. Talukder, as he was
always ready to help me and his other students when we needed extra help learning
some material. Thank you again to all of my professors, I appreciate everything you
all have taught me.

iii



Contents

1 Introduction 1
1.1 Background of Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Definitions of Graphs and Hypergrpahs . . . . . . . . . . . . . 2

1.2.1 Basic Graphs Definitions . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Basic Hypergraphs Definitions . . . . . . . . . . . . . . . . . . 3

1.3 Some Applications of Hypergraphs . . . . . . . . . . . . . . . . . . . 4

2 Classifying Linear Hypergraphs 5
2.1 Linear Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Linear Cyclic Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Linear Uniform Cyclic . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Linear Semi-Uniform Cyclic . . . . . . . . . . . . . . . . . . . 7
2.2.3 Linear Non-Uniform Cyclic . . . . . . . . . . . . . . . . . . . . 8

2.3 Linear Acyclic Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Linear Uniform Acyclic . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Linear Semi-Uniform Acyclic . . . . . . . . . . . . . . . . . . . 10
2.3.3 Linear Non-Uniform Acyclic . . . . . . . . . . . . . . . . . . . 11

3 Classifying Non-Linear Hypergraphs 13
3.1 Non-Linear Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Non-linear Balanced Hypergraphs . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Non-linear Balanced Cyclic . . . . . . . . . . . . . . . . . . . 15
3.2.2 Non-linear Balanced Acyclic . . . . . . . . . . . . . . . . . . . 16

3.3 Non-linear Semi-balanced Hypergraphs . . . . . . . . . . . . . . . . . 16
3.3.1 Non-linear Semi-balanced Cyclic . . . . . . . . . . . . . . . . . 17
3.3.2 Non-linear Semi-balanced Acyclic . . . . . . . . . . . . . . . . 17

3.4 Non-linear Unbalanced Hypergraphs . . . . . . . . . . . . . . . . . . 18
3.4.1 Non-linear Unbalanced Cyclic . . . . . . . . . . . . . . . . . . 18
3.4.2 Non-linear Unbalanced Acyclic . . . . . . . . . . . . . . . . . . 19

4 On Existence of Hypergraphs 21
4.1 Existence of Some Acyclic Hypergraphs . . . . . . . . . . . . . . . . . 21
4.2 Existence of Some Cyclic Hypergraphs . . . . . . . . . . . . . . . . . 23

5 Related Problems to Hypergraph Concepts 25
5.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.4 Part IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.5 Part V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



5.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.4 Part IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 Part V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion and Future Research 43

v



List of Figures

1.1 Example of Simple Graph . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Example of Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Linear Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Linear Cyclic Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Linear 5-Uniform Cyclic Hypergraph . . . . . . . . . . . . . . . . . . 7
2.4 Linear Semi-Uniform Cyclic Hypergraph . . . . . . . . . . . . . . . . 8
2.5 Linear Nonuniform Cyclic Hypergraph . . . . . . . . . . . . . . . . . 8
2.6 Linear Acyclic Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Linear 4-Uniform Acyclic Hypergraph . . . . . . . . . . . . . . . . . . 10
2.8 Linear Semi-Uniform Acyclic Hypergraph . . . . . . . . . . . . . . . . 11
2.9 Linear Nonuniform Acyclic Hypergraph . . . . . . . . . . . . . . . . . 12

3.1 Non-Linear Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Non-Linear Balanced Cyclic Hypergraph . . . . . . . . . . . . . . . . 15
3.3 Non-Linear Balanced Acyclic Hypergraph . . . . . . . . . . . . . . . . 16
3.4 Non-Linear Semi-balanced Cyclic Hypergraph . . . . . . . . . . . . . 17
3.5 Non-Linear Semi-balanced ayclic Hypergraph . . . . . . . . . . . . . . 18
3.6 Non-Linear Unbalanced Cyclic Hypergraph . . . . . . . . . . . . . . . 19
3.7 Non-Linear Unbalanced Acyclic Hypergraph . . . . . . . . . . . . . . 19

4.1 A Sunflower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 4−uniform weak non-linear semi-balanced sunflower on 3 petals . . . 23

5.1 Visualization of question 5 . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Visualization of question 6 . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Visualization of question 8 . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Visualization of question 9 . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



Chapter 1 Introduction

In this work, we researched deeper into the topic of hypergraphs. It is a newer dis-

covery explored in the 20th century and is now a concept in discrete mathematics.

In this Chapter, we discuss the background of hypergraphs, some basic definitions

along with several applications of hypergraphs in general. Also, we compare and

contrast graphs and hypergraphs. We see how graphs evolved into hypergraphs. In

Chapter 2, we classify the different kinds of linear hypergraphs. They are classified

based on uniformity and having cycles. In Chapter 3, we classify the different kinds

of non-linear hypergraphs. They are classified based on being balanced and having

cycles. In Chapter 4, we explore and present some necessary conditions for the ex-

istence of some linear and non-linear cyclic and acyclic hypergraphs. In Chapter 5,

we introduce hypergraphs to early college students by presenting simple True/False

questions, direct responses, computations along with reasoning questions. Detailed

solutions and explanations are also presented. Lastly, in Chapter 6, we conclude our

work with some discussions on future research involving the classifications of these

hypergraphs which generalize block designs such as Steiner systems.

1.1 Background of Hypergraphs

Hypergraphs became an independent theory and mathematical field in the early 1960s.

Hypergraphs were developed in Hungary and France under four main mathematicians.

It was first developed by Claude Berge in 1960 in France. The other mathematicians

involved included Paul Erdös, László Lovász, Paul Turán. In today’s world, appli-

cations of hypergraphs include being used for social networks analysis and service-

oriented architecture. Since social networking sites have expanded and become more
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complex, hypergraphs have become useful to show these complex relationships. For

example, Facebook’s data can now be represented by a hypergraph to show the data

sets of someone’s close friends, friends, and public. Hypergraphs can be used to help

businesses create service-oriented architecture such as application development and

application integration.

1.2 Basic Definitions of Graphs and Hypergrpahs

1.2.1 Basic Graphs Definitions

This is a list of basic definitions of Graph Theory found in [18]

• A graph G consists of a finite, non-empty set of elements called vertices, de-

noted by V (G). Graph G a finite family of unordered pairs of elements of V (G)

called edges, denoted by E(G).

• V (G) is called the vertex set of G. E(G) is called the edge family of G.

• The number of edges incident with a vertex v in G is called the degree of vertex

v.

• The number of edges present within a given graph G is called the size of G,

also known as |E(G)|.

• The number of vertices present within a given graph G is called the order of

G, denoted buy |V (G)|.

• A graph in which there is at most one edge joining any given pair of vertices

and there are no edges that join a vertex with itself, known as loops, is called a

simple graph.

• A graph is said to be connected if for each pair of vertices v, w there is a

sequence of vertices v0, v1, v2, . . . , vn, where v0 = w and vn = v such that vivi+1

is an edge where 0 ≤ i ≤ n− 1. In laments terms, one can trace every vertex to

all other vertices in a graph through a series of edges. This is known as a path.
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Figure 1.1: Example of Simple Graph

1.2.2 Basic Hypergraphs Definitions

A hypergraph is a graph H such that H = (V,E), where V denotes a finite set of

vertices and E denotes the set of hyperedges.

Figure 1.2: Example of Hypergraph

Below are some basic definitions for hypergraphs which can be found in [3].

• A hyperedge connects multiple vertices to form a hypergraph. Each hyperedge

is a non-empty subset of V .

• A hypergraph H is called r-uniform, where r is an integer, if, for each edge

e ∈ E(H), |e| = r(r ≥ 2).

• Hypergraphs that are 2-uniform are considered to be simple graphs.

• The degree of a vertex v denoted by d(v), is the number of hyperedges that

contains v.

3



• The length of a hypergraph is the number of hyperedges it contains.

• A hypergraph H is considered to be linear if each pair of hyperedges has at

most one vertex in common, otherwise, it is considered to be non-linear.

• A hypergraph is H is considered to be balanced when the gamma space is a

singleton.

• A hypergraph H is considered to be acyclic when it is cycle-free.

• A hypergraph is H is considered to be cyclic when it has at least one cycle.

1.3 Some Applications of Hypergraphs

Graphs and hypergraphs share many similarities since hypergraphs are generalization

of graphs. An edge in a graph is seen as a line. Each pair of vertices creates an edge.

A hyperedge is seen as a surface. Each set of vertices creates a hyperedge. In addition,

graphs are a subset of hypergraphs. A hypergraph is the higher-order analogue of a

graph. Using this type of graph, we are able to model a data set in more ways. Graph

theory is limited since it only represents binary connections. Complex systems can be

shown using a hypergraph. A 3-uniform hypergraph is the natural way to model the

variable structure of a 3SAT problem; 3SAT is one of the most important algorithmic

problems in computational complexity theory [11]. Further, Pagerank [14, 15] is

a commonly used graph analytic algorithm to find the relative importance of the

vertices in a network or search engines. For example, in a social network context we

can measure the importance of a user based on the group membership, e.g., owner of

a Twitter account with a group of followers would have a bigger influence in the whole

network. Among countless applications, hypergraphs have been broadly used as the

data model and classifier regularization in machine learning as they are involved in the

implementations of image retrieval [6], recommender systems [7] and bioinformatics

[8]. For example, clustering is in fact a form of integrating vertices into larger groups

from an input hypergraph to compute a rough hypergraph [9].
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Chapter 2 Classifying Linear Hypergraphs

In this chapter, we proceed to discuss the first of two big classes of hypergraphs: linear

and non-linear. Starting with linear hypergraphs, we divide them into two subclasses:

acyclic and cyclic. Each subclass is broken down according to the relationship among

the sizes of the hyperedges of its members.

2.1 Linear Hypergraphs

For a hypergraph to be considered linear, each pair of hyperedges will intersect at

most one vertex. This is depicted in Figure 2.1. A linear hypergraph can also be:

• Cyclic: at least one cycle in hypergraph

• Acyclic: cycle-free hypergraph

• Uniform: hyperedges contain same number of vertices

• Semi-Uniform: the difference between the size of each pair of hyperedges is at

most one.

• Non-Uniform: the difference between the sizes of two or more hyperedges is

greater than one.

5



Figure 2.1: Linear Hypergraph

Figure 2.1 is linear because each pair of hyperedges share one vertex.

2.2 Linear Cyclic Hypergraphs

For a hypergraph to be linear and cyclic, it must meet the following requirments:

• Each pair of hyperedges must intersect at only one vertex.

• The hyperedges must create at least one cycle.

Figure 2.2: Linear Cyclic Hypergraph

Figure 2.2 is linear because each pair of hyperedges share one vertex and there is

one cycle.
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2.2.1 Linear Uniform Cyclic

For a hypergraph to be linear, uniform, and cyclic it must meet the following re-

quirments:

• Each pair of hyperedges must intersect at most one vertex.

• Every edge family must contain the same number of vertices.

• The hyperedges must create at least one cycle.

Figure 2.3: Linear 5-Uniform Cyclic Hypergraph

Figure 2.3 is linear because each pair of hyperedges share one vertex, the edge

families have five vertices each, and there is one cycle.

2.2.2 Linear Semi-Uniform Cyclic

For a hypergraph to be linear, semi-uniform, and cyclic it must meet the following

requirments:

• Each pair of hyperedges must intersect at most one vertex.

• Only one edge family can contain a different number of vertices than the others.

• The hyperedges must create at least one cycle.

7



Figure 2.4: Linear Semi-Uniform Cyclic Hypergraph

Figure 2.4 is linear because each pair of hyperedges share one vertex, the edge

families have the same number of vertices except for one hyperedge, and there is one

cycle.

2.2.3 Linear Non-Uniform Cyclic

For a hypergraph to be linear, non-uniform, and cyclic it must meet the following

requirements:

• Each pair of hyperedges must intersect at most one vertex.

• Some hyperedges do not contain the same number of vertices.

• The hyperedges must create at least one cycle.

Figure 2.5: Linear Nonuniform Cyclic Hypergraph

8



Figure 2.5 is linear because each pair of hyperedges share one vertex, the edge

families do not have the same number of vertices, and there is one cycle.

2.3 Linear Acyclic Hypergraphs

For a hypergraph to be linear and acyclic, it must meet the following requirements:

• Each pair of hyperedges must intersect at most one vertex.

• The hyperedges must not create a cycle in the hypergraph.

Figure 2.6: Linear Acyclic Hypergraph

Figure 2.6 is linear because each pair of hyperedges share one vertex and there no

cycle.

2.3.1 Linear Uniform Acyclic

For a hypergraph to be linear, uniform, and acyclic it must meet the following re-

quirements:

• Each pair of hyperedges must intersect at most one vertex.

• Every edge family must contain the same number of vertices.

• The hyperedges must not create a cycle.

9



Figure 2.7: Linear 4-Uniform Acyclic Hypergraph

Figure 2.7 is linear because each pair of hyperedges share one vertex, the edge

families have four vertices each, and there is no cycle.

2.3.2 Linear Semi-Uniform Acyclic

For a hypergraph to be linear, semi-uniform, and acyclic it must meet the following

requirments:

• Each pair of hyperedges must intersect at most one vertex.

• Only one edge family can contain a different number of vertices than the others.

• The hyperedges must not create a cycle.

10



Figure 2.8: Linear Semi-Uniform Acyclic Hypergraph

Figure 2.8 is linear because each pair of hyperedges share one vertex, the edge

families have the same number of vertices except for one hyperedge, and there is no

cycle.

2.3.3 Linear Non-Uniform Acyclic

For a hypergraph to be linear, non-uniform, and acyclic it must meet the following

requirements:

• Each pair of hyperedges must intersect at most one vertex.

• Some hyperedges do not contain the same number of vertices.

• The hyperedges must not create a cycle.

11



Figure 2.9: Linear Nonuniform Acyclic Hypergraph

Figure 2.9 is linear because each pair of hyperedges share one vertex, the edge

families do not have the same number of vertices, and there is no cycle.
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Chapter 3 Classifying Non-Linear Hypergraphs

In this chapter, we introduce and classify the least known class of hypergraphs, namely

non-linear hypergraphs. For simplicity, the non-empty intersecting set of any pair of

hyperedges will be referred to as joint and we denote its cardinality by some γ ≥ 1

value.

In other words, given a connected hypergraph H = (V, E) we can assume that,

for some ei, ej ∈ E , |ei ∩ ej| = γ with 1 ≤ γ < max{|ei|, |ej|}. It is clear that

when some γ > 1, we are dealing with a non-linear hypergraph. A Γ-spectrum of

order r = |E| − 1, denoted by Γ = Γ(H) =< γ1, γ2, . . . , γ|E|−1 >, is a sequence of

γ values of a given hypergraph H. Further, the set of distinct γ values denoted by

Γ∗ is called a Γ-space. For example, a linear hyperpath on l hyperedges, has a Γ-

spectrum of order l, Γ =< 1, 1, . . . , 1 > and a Γ-space Γ∗ = {1}. In fact, every linear

acyclic hypergraph share the same Γ-spectrum and the same Γ-space, as previously

described. However, for non-linear hypergraphs, these two parameters can differ

significantly. We have every reason to conjecture that, when paired with a degree

sequence, one can describe all uniform and non-uniform hypergraphs. Recall, the

degree of a vertex v ∈ V is the number of hyperedges that contains the vertex; the

minimum and maximum degrees are often denoted by δ and ∆, respectively. For the

purpose of this research we shall focus on the two extreme degree cases: δ = 1 and

∆ = r, with r ≥ 2. With these concepts we classify all non-linear hypergraphs into

three categories or classes:

1. If ∀ (γi, γj) ∈ Γ(H), γi−γj = 0, then H is said to be a balanced hypergraph.

In particular, the special case when γi = γj = 1, ∀ (γi, γj) ∈ Γ(H), H is a linear

hypergraph as discussed in the previous chapter. Consequently, the Γ-space

is a singleton.

13



We note here that, every linear hypergraph is balanced but not every balanced

hypergraph is linear.

2. If ∀ (γi, γj) ∈ Γ(H), γi − γj = 1, then H is said to be a semi-balanced

hypergraph. In general, the Γ-space of every semi-balance hypergraph is a

pair although the converse is not true. Also there is no semi-balanced linear

hypergraph.

3. If ∃ (γi, γj) ∈ Γ(H), γi − γj > 1, then H is said to be an unbalanced hyper-

graph.

3.1 Non-Linear Hypergraphs

A hypergraph is considered non-linear if its hyperedges share more than one vertex.

An example is shown in Figure 3.1. A non-linear hypergraph can also be:

• Balanced: if |Γ∗| = 1

• Semi-balanced: if |Γ∗| = 2

• Unbalanced: if |Γ∗| > 2

• Cyclic: at least one cycle in hypergraph

• Acyclic: cycle-free hypergraph

Figure 3.1: Non-Linear Hypergraph

Figure 3.1 is non-linear because each pair of hyperedges share two vertices.

14



3.2 Non-linear Balanced Hypergraphs

For a hypergraph to be non-linear and balanced, it must meet the following require-

ments:

• At least one pair of hyperedges intersect at more than one vertex.

• The cardinality of the gamma space is a singleton.

3.2.1 Non-linear Balanced Cyclic

For a hypergraph to be non-linear, balanced, and cyclic, it must meet the following

requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of gamma space is a singleton.

• The hyperedges must create at least one cycle.

Figure 3.2: Non-Linear Balanced Cyclic Hypergraph

Figure 3.2 is non-linear because there is at least two hyperedges which share more

than one vertex. The hypergraph is balanced because |Γ∗| = 1, i.e., all intersecting

hyperedges share exactly the same number of vertices. The hypergraph also contains

one cycle, which makes it cyclic. Observe that, the Γ-spectrum, Γ =< 2, 2, 2, 2 >.

15



3.2.2 Non-linear Balanced Acyclic

For a hypergraph to be non-linear, balanced, and acyclic, it must meet the following

requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of gamma space is a singleton.

• The hyperedges must not create a cycle.

Figure 3.3: Non-Linear Balanced Acyclic Hypergraph

Figure 3.3 is non-linear because the hyperedges intersect at two vertices. The

hypergraph is balanced because |Γ∗| = 1. The hypergraph does not contain a cycle,

which makes it acyclic. Observe that, the Γ spectrum, Γ =< 2, 2 >.

3.3 Non-linear Semi-balanced Hypergraphs

For a hypergraph to be non-linear and semi-balanced, it must meet the following

requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is two.

16



3.3.1 Non-linear Semi-balanced Cyclic

For a hypergraph to be non-linear, semi-balanced, and cyclic, it must meet the fol-

lowing requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is two.

• The hyperedges must create at least one cycle.

Figure 3.4: Non-Linear Semi-balanced Cyclic Hypergraph

Figure 3.4 is non-linear because the hyperedges intersect at two vertices. The

hypergraph is semi-balanced because |Γ∗| = 2. The hypergraph also contains one

cycle, which makes it cyclic. Observe that, the Γ spectrum, Γ =< 2, 1, 1, 2 >.

3.3.2 Non-linear Semi-balanced Acyclic

For a hypergraph to be non-linear, semi-balanced, and acyclic, it must meet the

following requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is two.

• The hyperedges must not create a cycle.

17



Figure 3.5: Non-Linear Semi-balanced ayclic Hypergraph

Figure 3.5 is non-linear because the hyperedges intersect at two vertices. The

hypergraph is semi-balanced because |Γ∗| = 2. The hypergraph does not contain a

cycle, which makes it acyclic. Observe that, the Γ spectrum, Γ =< 1, 2 >.

3.4 Non-linear Unbalanced Hypergraphs

For a hypergraph to be non-linear and unbalanced, it must meet the following re-

quirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is greater than two.

3.4.1 Non-linear Unbalanced Cyclic

For a hypergraph to be non-linear, unbalanced, and cyclic, it must meet the following

requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is greater than two.

• The hyperedges must create at least one cycle.
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Figure 3.6: Non-Linear Unbalanced Cyclic Hypergraph

Figure 3.6 is non-linear because the hyperedges intersect at two vertices. The

hypergraph is unbalanced because |Γ∗| > 2. The hypergraph also contains one cycle,

which makes it cyclic. Observe that, the Γ spectrum, Γ =< 3, 1, 1, 2 >.

3.4.2 Non-linear Unbalanced Acyclic

For a hypergraph to be non-linear, unbalanced, and acyclic, it must meet the following

requirements:

• Each pair of hyperedges must intersect at more than one vertex.

• The cardinality of the gamma space is greater than two.

• The hyperedges must not create a cycle.

Figure 3.7: Non-Linear Unbalanced Acyclic Hypergraph
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Figure 3.7 is non-linear because the hyperedges intersect at two vertices. The

hypergraph is unbalanced because |Γ∗| > 2. The hypergraph does not contain a

cycle, which makes it acyclic. Observe that, the Γ spectrum, Γ =< 3, 1, 2 >.
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Chapter 4 On Existence of Hypergraphs

In the previous chapters, we have introduced and classified several hypergraphs. Yet,

it is worth noting that, given some constraints on either the number of vertices,

the size of the hyperedges, the sizes of the joints, the presence or not of a cyclic

hyperpath, many of these hypergraphs may or may not exist. A natural question is

under what conditions can such hypergraphs exists? Broadly speaking, hypergraphs

are intersecting sets. As such, given any random family of sets, some intersections

may not exist, some sizes may be different, etc. Still, if one desires to form a particular

family, it becomes very important to know under what conditions is the formation

feasible. Such feasibility leads to the notion of the existence of this hypergraph.

Classic examples involve Steiner systems [17].

4.1 Existence of Some Acyclic Hypergraphs

A sunflower (hypergraph) Hl = (X, E) (also known as a ∆− system in [5]) with l

petals and a core S is a collection of sets e1, . . . , el such that ei ∩ ej = S for all i ̸= j.

The elements of the core are called seeds. A Venn diagram of these sets would look

like a sunflower. Observe that any family of pairwise disjoint sets is a sunflower (with

an empty core) and a hyperstar is a sunflower with a core of size 1. Figure 4.1 is

an example of a 5−uniform sunflower with a core S of size 3 having e1, e2 and e3 as

petals.
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Figure 4.1: A Sunflower

Erdös-Rado sunflower Lemma [5] gives a necessary condition for the existence of

a Sunflower given any collection of uniform sets. This condition is a lower bound for

the size (or cardinality) of the collection although it is not known if the bound is best

possible. We restate the lemma without proof, which is by induction on k.

Sunflower Lemma: Given any collection of n distinct sets of size k (from a

universal set) with n > k!(l − 1)k, there is a subcollection of l-sets that forms a

sunflower.

We happen to think that this bound is not best possible. Take for instance, n = 6.

It is clear that the triples {1, 2, 3}, {1, 2, 4}, {1, 2, 5} form a balanced non-linear 3-

uniform Sunflower. Yet, 6 = n < l(k) << k!(l−1)k, the proposed bound by Erdös and

Rado. Here, we propose a necessary condition on the existence of such Sunflowers.

Theorem 4.1.1. If H is a k-uniform Sunflower of order m on α seeds, then m ≡ α

mod (k − α).

Proof. Suppose H is a k-uniform Sunflower of order m on α seeds with length l ≥ 2.

Then, remove the α seeds from the order m vertices. This leaves m− α elements to

be equally distributed among all l-petals. In which case, for each hyperedge, we have
m− α

l
= k − α, the numbers of elements not being part of the core. This implies

that m = l(k − α) + α, for all l. Hence, the proof.

From Theorem 4.1.1 follows the next corollary.

Corollary 4.1.1.1. If H denotes a linear (with α = 1) or nonlinear (with α > 1)

Sunflower of order m with length l on α seeds then m ≥ l(k − α) + α.
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A second family of Sunflower has recently been introduced by Allagan in [1].

A transversal (or blocking set) of F = {e1, . . . , el} is a set which intersects every

member of F . A transversal with the least member is often referred to as a covering

set and its size is called a covering number (or blocking number). The core S of a

sunflower is a transversal and S is a covering set if |S| = 1. Let F = {e1, . . . , el} be a

collection of pairwise disjoint sets and we denote by S a transversal of the collection.

We call S the core of the collection and its elements are the seeds. The members of

the collection will be referred to as petals. In [1], Allagan was first to introduce the

following hypergraph Hl = (X, E) with E = S∪F as a weak sunflower with l−petals.

Figure 4.2 is a representation of a 4−uniform weak non-linear semi-balanced sunflower

with a core S of size 6 having petals e1, e2 and e3.

Figure 4.2: 4−uniform weak non-linear semi-balanced sunflower on 3 petals

Although Erdös-Rado sunflower lemma gives some necessary condition for the ex-

istence of a (strong) sunflower, albeit using a weak bound, there is no known condition

on the existence of a weak sunflower given a collection of n distinct k−uniform sets.

4.2 Existence of Some Cyclic Hypergraphs

A Steiner system with parameters t, k, n, written S(t, k, n), is an n-element set

S together with a set of k-element subsets of S (called blocks or hyperedges) with

the property that each t-element subset of S is contained in exactly one block. The

particular well-studied case involves Steiner triple systems of order n. A Steiner triple

system of order n, denoted by STS(n), is a (V ;B) design with n points and each

block or hyperedge B ∈ B has |B| = 3 (also known as triples) such that each pair

of distinct elements x, y ∈ V occur together in exactly one hyperedge of B. For
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example,

• for STS(7), we have V = {1, . . . , 7} and the family of hyperedges are B =

{(1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 6), (2, 5, 7), (3, 4, 7), (3, 5, 6)}.

• For STS(9), we have V = {1, . . . , 9} and the family of hyperedges are B =

{(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 5, 9), (2, 6, 7), (3, 4, 8),

(1, 6, 8), (2, 4, 9), (3, 5, 7)}

Steiner triple systems were defined for the first time by W.S.B. Woolhouse (prize

question 1733, Lady’s and Gentleman’s Diary, 1844 [16]) which asked for which pos-

itive integers n does a STS(n) exists. This was solved by Rev. T.P. Kirkman, who

proved that the following necessary conditions are sufficient.

Theorem 4.2.1. A STS(n) exists if and only if n ≡ 3 (mod 6)

Because no tuple belongs to two or more blocks, by the necessary condition, it

is clear that STS(7) are families of 3-uniform linear cyclic hypergraphs of order 7

with length 7. Also, STS(9) are families of 3-uniform linear cyclic hypergraphs of

order 9 with length 12. As such, Steiner systems or block designs, S(t, k, n), are

special families of k-uniform linear cyclic hypergraphs of order n. Here, we provide a

necessary condition for the existence of any uniform hypergraph.

Theorem 4.2.2. If H is a k-uniform linear hypercycle of order m with length l,

then m ≡ l mod (k − 2).

Proof. Suppose H is a k-uniform linear hypercycle of order m with length l. There

are exactly l joints, each contributes 2 vertices to the size of each l hyperedge. Then,

remove the l joints from the order m vertices. This leaves m − l elements to be

equally distributed among all l-petals. In which case, for each hyperedge, we have
m− l

l
= k−2, the numbers of elements of degree 1. This implies that m = l(k−2)+l,

for all l. Hence, the proof.

From Theorem 4.2.2 follows the next corollary.

Corollary 4.2.2.1. If H denotes a linear cyclic hypergraph of order m with length

l then m ≥ l(k − 2) + l.
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Chapter 5 Related Problems to Hypergraph Concepts

5.1 Activities

In this section, we present the reader with many questions, both theoretical and

applied. Solutions or answers are also given to each question.

5.1.1 Part I

Match the following terms to the correct definitions.

A. Hypergraph

B. Simple Graph

C. Hyperedge

D. Acyclic Hypergraph

E. Cyclic Hypergraph

F. Linear Hypergraph

G. Non-Linear Hypergraph

H. Uniform Hypergraph

I. Semi-Uniform Hypergraph

J. Non-Uniform Hypergraph

K. Balanced Hypergraph

L. Semi-Balanced Hypergraph
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M. Unbalanced Hypergraph

1. ___A hypergraph that has no two edges intersecting at more than one vertex.

2. ___A hypergraph that is 2-uniform.

3. ___A hypergraph is considered to be this when the gamma space is a singleton.

4. ___Connects multiple vertices to form a hypergraph.

5. ___Every edge family contains the same number of vertices.

6. ___A hypergraph that is cycle-free.

7. ___A graph H such that H = (V,E), where V denotes a finite set of vertices

and E denotes the set of hyperedges.

8. ___A hypergraph that has at least one cycle.

9. ___A hypergraph is considered to be this when the gamma space is greater

than two.

10. ___A hypergraph that has only one edge family containing a different number

of vertices than the others.

11. ___A hypergraph is considered to be this when the gamma space equals two.

12. ___A hypergraph that has hyperedges sharing more than one vertex.

13. ___A hypergraph that has some hyperedges containing a different number of

vertices than the others.
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5.1.2 Part II

The following are true or false questions. Label each with T for true and F for false.

1. ___Every linear hypergraph is balanced.

2. ___The order of a hypergraph is the number of vertices it contains.

3. ___Every balanced hypergraph is linear.

4. ___Hypergraphs that are 2-uniform are considered to be simple graphs.

5. ___A cyclic hypergraph can have multiple cycles.

6. ___A hypergraph is non-linear if no two edges intersect at more than one

vertex.

7. ___The gamma space is used to determine the hypergraph’s uniformity.

8. ___The length of a hypergraph is the number of hyperedges it contains.

9. ___The gamma spectrum and gamma spectrum of a hypergraph uses the

length of the hypergraph to determine them.

10. ___It is possible to have a cyclic 6-uniform linear hypergraph with order 10

and length 3.
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5.1.3 Part III

The following hypergraphs are given. Use the image to determine if the hypergraph

is: linear, non-linear, cyclic, acyclic, uniform, semi-uniform, non-uniform, balanced,

semi-balanced, or unbalanced. Shade/ select all appropriate boxes.

Hypergraph 1

□ Linear

□ Non-Linear

□ Cyclic

□ Acyclic

□ Uniform

□ Semi-Uniform

□ Non-Uniform

□ Balanced

□ Semi-Balanced

□ Unbalanced
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Hypergraph 2

□ Linear

□ Non-Linear

□ Cyclic

□ Acyclic

□ Uniform

□ Semi-Uniform

□ Non-Uniform

□ Balanced

□ Semi-Balanced

□ Unbalanced
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Hypergraph 3

□ Linear

□ Non-Linear

□ Cyclic

□ Acyclic

□ Uniform

□ Semi-Uniform

□ Non-Uniform

□ Balanced

□ Semi-Balanced

□ Unbalanced
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5.1.4 Part IV

The following multiple choice questions are given.

1. Which of the following gamma spectrum’s, Γ, would be a balanced hypergraph?

A. Γ =< 2, 3, 1, 2 >

B. Γ =< 2, 2, 1 >

C. Γ =< 2, 2 >

D. Γ =< 1, 3, 1 >

2. If the gamma spectrum of a hypergraph is Γ =< 3, 3, 3, 3 >, the gamma space,

|Γ∗|, would be which of the following?

A. |Γ∗| = 3

B. |Γ∗| = 1

C. |Γ∗| = 4

D. |Γ∗| = 2

3. What type of hypergraph would it be if it contained two cycles and Γ =<

2, 3, 4, 1 >?

A. Linear, Cyclic, Semi-balanced

B. Non-linear, Acyclic, Unbalanced

C. Linear, Acyclic, Balanced

D. Non-linear, Cyclic, Unbalanced

4. What type of hypergraph would it be if it was of length two, Γ∗ = 1, and the

order of the hypergraph was ten.

A. Linear, Acyclic, Balanced, Uniform

B. Linear, Cyclic, Balanced, Uniform

C. Non-linear, Cyclic, Unbalanced, Non-uniform

D. Non-linear, Acyclic, Unbalanced, Semi-uniform
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5. If a linear cyclic hypergraph has order 18 and length 3, what is the uniformity

of the hypergraph?

A. 3-uniform

B. 7-uniform

C. 5-uniform

D. not uniform

6. If a linear cyclic hypergraph has order 17 and length 3, what is the uniformity

of the hypergraph?

A. 3-uniform

B. 7-uniform

C. 5-uniform

D. not uniform

7. If a linear acyclic hypergraph has order 17 and length 4, what is the uniformity

of the hypergraph?

A. 4-uniform

B. 3-uniform

C. 5-uniform

D. not uniform

8. What is the order of a linear cyclic hypergraph that is 3-inform and has length

of 5?

A. 10

B. 5

C. 7

D. not a hypergraph
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5.1.5 Part V

The following questions are application problems.

1. Is there a linear 4-uniform hypergraph of order 10 and length 3? If there is

none, what is the order H that guarantees its existence if:

(a) H is cyclic?

(b) H is acyclic?

2. Is there a linear 5-uniform hypergraph of order 10 and length 3? If there is

none, what is the order H that guarantees its existence if:

(a) H is cyclic?

(b) H is acyclic?

3. Is there a linear 6-uniform hypergraph of order 10 and length 3? If there is

none, what is the order H that guarantees its existence if:

(a) H is cyclic?

(b) H is acyclic?

4. Is there a linear k-uniform hypergraph of order m ≥ 3 and length r ≥ 3? How

many are they?

5. How many supervisors are needed to form 4 distinct groups of 3 out of 8 indi-

viduals? An individual is a supervisor if and only if he/she belongs to two or

more groups.

6. Can you form two groups of five out of ten individuals, if at least one of them

has to be the supervisor? An individual is a supervisor if and only if he/she

belongs to two or more groups.

7. Can you form a balanced non-linear 5-uniform hypergraph of order 10?

8. Can you form a semi-balanced non-linear hypergraph of order 10?
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9. Can you draw a hypergraph H of order 15 whose Γ-spectrum is < 1, 1, 3, 2 >

with hyperedges of size greater or equal to 3? If not, why? Is this spectrum

representative of an unbalanced hypergraph? What is the size of Γ∗? Is H cyclic

or acyclic?

5.2 Solutions

In this section, solutions are provided to the given practice problems.

5.2.1 Part I

1. F: Linear A hypergraph that has no two edges intersecting at more than one

vertex.

2. B: Simple Graph A hypergraph that is 2-uniform.

3. K: Balanced A hypergraph is considered to be this when the gamma space is a

singleton.

4. C: Hyperedge Connects multiple vertices to form a hypergraph.

5. H: Uniform Every edge family contains the same number of vertices.

6. D: Acyclic A hypergraph that is cycle-free.

7. A: Hypergraph A graph H such that H = (V,E), where V denotes a finite set

of vertices and E denotes the set of hyperedges.

8. E: Cyclic A hypergraph that has at least one cycle.

9. M: Unbalanced A hypergraph is considered to be this when the gamma space

is greater than two.

10. I: Semi-Uniform A hypergraph that has only one edge family containing a dif-

ferent number of vertices than the others.

11. L: Semi-Balanced A hypergraph is considered to be this when the gamma space

equals two.
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12. G: Non-Linear A hypergraph that has hyperedges sharing more than one vertex.

13. J: Non-Uniform A hypergraph that has some hyperedges containing a different

number of vertices than the others.

5.2.2 Part II

1. T Every linear hypergraph is balanced.

2. T The order of a hypergraph is the number of vertices it contains.

3. F Every balanced hypergraph is linear.

4. T Hypergraphs that are 2-uniform are considered to be simple graphs.

5. T A cyclic hypergraph can have multiple cycles.

6. F A hypergraph is non-linear if no two edges intersect at more than one vertex.

7. F The gamma space is used to determine the hypergraph’s uniformity.

8. T The length of a hypergraph is the number of hyperedges it contains.

9. F The gamma spectrum and gamma spectrum of a hypergraph uses the length

of the hypergraph to determine them.

10. F It is possible to have a cyclic 6-uniform linear hypergraph with order 10 and

length 3.
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5.2.3 Part III

Hypergraph 1

■ Linear

□ Non-Linear

■ Cyclic

□ Acyclic

■ Uniform

□ Semi-Uniform

□ Non-Uniform

■ Balanced

□ Semi-Balanced

□ Unbalanced
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Hypergraph 2

■ Linear

□ Non-Linear

□ Cyclic

■ Acyclic

□ Uniform

□ Semi-Uniform

■ Non-Uniform

■ Balanced

□ Semi-Balanced

□ Unbalanced
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Hypergraph 3

□ Linear

■ Non-Linear

■ Cyclic

□ Acyclic

□ Uniform

■ Semi-Uniform

□ Non-Uniform

□ Balanced

■ Semi-Balanced

□ Unbalanced

5.2.4 Part IV

1. Which of the following gamma spectrum’s, Γ, would be a balanced hypergraph?

C. Γ =< 2, 2 >

2. If the gamma spectrum of a hypergraph is Γ =< 3, 3, 3, 3 >, the gamma space,

|Γ∗|, would be which of the following?

B. |Γ∗| = 1

3. What type of hypergraph would it be if it contained two cycles and Γ =<

2, 3, 4, 1 >?

D. Non-linear, Cyclic, Unbalanced

4. What type of hypergraph would it be if it was of length two, Γ∗ = 1, and the

order of the hypergraph was ten.

A. Linear, Acyclic, Balanced, Uniform
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5. If a linear cyclic hypergraph has order 18 and length 3, what is the uniformity

of the hypergraph?

B. 7-uniform

6. If a linear cyclic hypergraph has order 17 and length 3, what is the uniformity

of the hypergraph?

D. not uniform

7. If a linear acyclic hypergraph has order 17 and length 4, what is the uniformity

of the hypergraph?

C. 5-uniform

8. What is the order of a linear cyclic hypergraph that is 3-inform and has length

of 5?

A. 10

5.2.5 Part V

1. Is there a linear 4-uniform hypergraph of order 10 and length 3? If there is

none, what is the order, if possible, of H that guarantees its existence if:

(a) H is cyclic?

This hypergraph is not possible to have a combination of length 3 and

be 4-uniform.

(b) H is acyclic?

This hypergraph is possible having order 10.

2. Is there a linear 5-uniform hypergraph of order 10 and length 3? If there is

none, what is the order, if possible, of H that guarantees its existence if:

(a) H is cyclic?

This hypergraph is possible having order 10.
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(b) H is acyclic?

This hypergraph would need to have order 13.

3. Is there a linear 6-uniform hypergraph of order 10 and length 3? If there is

none, what is the order, if possible, of H that guarantees its existence if:

(a) H is cyclic?

This hypergraph would need to have order 15.

(b) H is acyclic?

This hypergraph would need to have order 16.

4. Is there a linear k-uniform hypergraph of order m ≥ 3 and length r ≥ 3? How

many are they?

There are infinitely many for all k ≥ 2, since m = r(k − 1).

5. How many supervisors are needed to form 4 distinct groups of 3 out of 8 indi-

viduals? An individual is a supervisor if and only if he/she belongs to two or

more groups.

This question is asking how many vertices are needed to make a linear cyclic

hypergraph that is 3-uniform, has length 4, and order 8. By observing Figure

5.1, there would be 4 supervisors needed.

Figure 5.1: Visualization of question 5

6. Can you form two groups of six out of 11 individuals, if at least one of them

has to be the supervisor? An individual is a supervisor if and only if he/she

belongs to two or more groups.

40



Yes. Figure 5.2 is an example of a solution to this problem. This question is

asking if it is possible to have a hypergraph that is a linear acyclic hypergraph

that is 6-uniform, has length 2, and order 11.

Figure 5.2: Visualization of question 6

7. Can you form a balanced non-linear 5-uniform hypergraph of order 10?

No, it is not possible to form a balanced non-linear 5-uniform hypergraph

of order 10.

8. Can you form a semi-balanced non-linear hypergraph of order 10?

Yes, it is possible. Figure 5.3 is an example of a solution to this problem.

The hypergraph is semi-balanced because Γ =< 2, 1, 1 >, which then provides

us with |Γ∗| = 2. Since the hypergraph is semi-balanced, it must also be non-

linear. In addition, |V (G)| = 10.

Figure 5.3: Visualization of question 8

9. Can you draw a hypergraph H of order 15 whose Γ-spectrum is < 1, 1, 3, 2 >

with hyperedges of size greater or equal to 3? If not, why? Is this spectrum

representative of an unbalanced hypergraph? What is the size of |Γ∗|? Is H

cyclic or acyclic?

It is possible to create a hypergraph with these requirements. Figure 5.4

is an example of a solution to this problem. The hypergraph is unbalanced

because Γ =< 1, 1, 3, 2 >, which then provides us with Γ∗ > 2. Since the

hypergraph is unbalanced, it must also be non-linear. In addition, |V (G)| = 15.

41



This hypergraph can be created to be either cyclic or acyclic, in this example

it is cyclic.

Figure 5.4: Visualization of question 9
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Chapter 6 Conclusion and Future Research

In many areas beyond social network, it common to see hypergraphs being used

to model chemical reactions, Neural networks, and machine learning. Through this

research, we are able to classify several families of hypergraphs. With better classifi-

cations come better models use and descriptions. Once classified, these notions can

further be used in other hypergraph related researches such as coloring constraints

theory, mixed hypergraphs theory, game theory, etc. Our work has been primarily

to break hypergraphs into two classes: those that are linear and those that are not,

namely non-linear. Each class of such hypergraphs contains sub-classes that are cyclic

or acyclic. Further, within each subclass, we separated those that are uniform from

those that are not, i.e., non-uniform. Within these groups, we identify members which

are balanced vs non-balanced, depending on how varied are the hyperedges’ sizes of

each hypergraph. As such, we concluded that linear hypergraphs are all balanced,

and there may not exist a given member of a hypergraph when linearity, uniformity,

or being balanced constraints are applied on a given set of vertices. Although in this

research, we have presented several necessary conditions for the existence of some

linear and non-linear uniform hypergraphs, more work needs to be done to define

their sufficiency conditions and on the existence of several other hypergraph mem-

bers. These conditions and characterisations will further complement some advanced

research studies in design theory that involve Steiner k-systems which are k-uniform

hypergraphs that were once referred to as ∆-systems [5] by Erdös and Rado.
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